from SciPy.cluster.vq import kmeans,vq,whitenfrom numpy import vstack,array
from numpy.random import rand
# data generation with three features
data = vstack((rand(100,3) + array([.5,.5,.5]),rand(100,3)))
array([[ 1.48598868e+00, 8.17445796e-01, 1.00834051e+00],
[ 8.45299768e-01, 1.35450732e+00, 8.66323621e-01],
[ 1.27725864e+00, 1.00622682e+00, 8.43735610e-01],
............
scipy.constant package is available with a wide range of constants, which is used extensively in the scientific field. There are various physical, mathematical constants and units that we can import the required constants and use them as per needed. scipy.constant provides the following list of mathematical constants.pigoldenpi' value by importing different modules.#Import pi constant from the scipy
from scipy.constants import pi
#Import pi from math package
from math import pi
#Comparing these two pi value
print("sciPy - pi Value = %.18f"%scipy.constants.pi)
print("math - pi Value = %.18f"%math.pi)
sciPy - pi Value = 3.141592653589793116
math - pi Value = 3.141592653589793116
x[n] is calculated by fft() function and the inverse transform is calculated using ifft().#Importing the fft and inverse fft functions from fftpackage
from scipy.fftpack import fft
#Importing numpy
import numpy as np
#create an array with random n numbers
x = np.array([1.0, 2.0, 1.0, -1.0, 1.5])
#Applying the fft function
y = fft(x)
print (y)
[ 4.5 +0.j , 2.08155948-1.65109876j,
-1.83155948+1.60822041j, -1.83155948-1.60822041j,
2.08155948+1.65109876j]
[1, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0]scipy.sparse that provides functions to deal with sparse data. There are two types of sparse matrices that we use :scipy.sparse.csr_matrix().import numpy as np
from scipy.sparse import csr_matrix
arr = np.array([0, 0, 0, 0, 0, 1, 1, 0, 2])
print(csr_matrix(arr))
Output :
(0, 5) 1
(0, 6) 1
(0, 8) 2
scipy.integrate sub-package provides several integration techniques including an ordinary differential equation integrator. scipy.interpolation package.import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
x = np.linspace(0, 4, 12)
y = np.cos(x**2/3+4)
print (x,y)
Output :
(
array([0., 0.36363636, 0.72727273, 1.09090909, 1.45454545, 1.81818182,
2.18181818, 2.54545455, 2.90909091, 3.27272727, 3.63636364, 4.]),
array([-0.65364362, -0.61966189, -0.51077021, -0.31047698, -0.00715476,
0.37976236, 0.76715099, 0.99239518, 0.85886263, 0.27994201,
-0.52586509, -0.99582185])
)
rv_continuous : A generic continuous random variable class meant for subclassingrv_discrete : A generic discrete random variable class meant for subclassingrv_histogram : Generates a distribution given by a histogramfrom scipy.stats import norm
import numpy as np
print(norm.cdf(np.array([3,-1., 0, 1, 2, 4, -2, 5])))
[0.9986501 0.15865525 0.5 0.84134475 0.97724987 0.99996833
0.02275013 0.99999971]
csr_matrix() is used to create a sparse matrix of compressed sparse row format whereas csc_matrix() is used to create a sparse matrix of compressed sparse column format.scipy.sparse.csr_matrix(shape=None, dtype=None) x + cos(x) for that you can use SciPy's optimze.root function.fun : a function representing an equation.x0 : an initial guess for the root.