This tutorial provides a beginner-friendly introduction to Computer Vision (CV), a subfield of artificial intelligence (AI) that enables machines to interpret and process visual data, such as images and videos. CV is a rapidly evolving area with applications in autonomous vehicles, medical imaging, and augmented reality. This tutorial covers the basics of CV, key concepts, techniques, tools, a hands-on example, and resources for further learning, tailored to the context of AI research areas. No prior CV experience is assumed, but basic Python knowledge is helpful for the coding section.
Computer Vision involves teaching computers to "see" and understand visual data by extracting meaningful information from images or videos. It combines machine learning (ML), deep learning (DL), and image processing to perform tasks like object detection, image classification, and facial recognition.
Examples of CV Tasks:
These open-source tools, widely used as of 2025, simplify CV development:
Let’s build a simple image classification model to classify cats vs. dogs using a pre-trained CNN (ResNet50) in TensorFlow/Keras. This example uses a small dataset and runs on a standard laptop (GPU optional).
Install required libraries:
pip install tensorflow opencv-python matplotlib numpy
For this tutorial, download a small subset of the Cats vs. Dogs dataset from Kaggle or use a public dataset like TensorFlow’s tf.keras.datasets. Alternatively, create folders train/cats, train/dogs, test/cats, and test/dogs with a few labeled images (e.g., 100 per class).
Below is a Python script to load data, preprocess images, and train a model.
import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# Define paths (update with your dataset paths)
train_dir = 'path/to/train' # Folder with 'cats' and 'dogs' subfolders
test_dir = 'path/to/test'
# Image parameters
img_height, img_width = 224, 224
batch_size = 32
# Data augmentation and preprocessing
train_datagen = ImageDataGenerator(
rescale=1./255, # Normalize pixel values
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True
)
test_datagen = ImageDataGenerator(rescale=1./255)
# Load and preprocess images
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary' # Cats (0) vs. Dogs (1)
)
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary'
)
# Load pre-trained ResNet50
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3))
# Add custom layers
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x) # Binary classification
model = Model(inputs=base_model.input, outputs=predictions)
# Freeze pre-trained layers
for layer in base_model.layers:
layer.trainable = False
# Compile model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train model
history = model.fit(
train_generator,
epochs=5, # Increase for better results
validation_data=test_generator
)
# Plot training results
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Save model
model.save('cats_vs_dogs_model.h5')
Use the trained model to classify a new image:
from tensorflow.keras.preprocessing.image import load_img, img_to_array
import numpy as np
# Load and preprocess a test image
img_path = 'path/to/test_image.jpg' # Path to a cat or dog image
img = load_img(img_path, target_size=(img_height, img_width))
img_array = img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
# Predict
prediction = model.predict(img_array)
if prediction[0] > 0.5:
print("Dog")
else:
print("Cat")
Computer Vision is a transformative AI field, enabling machines to interpret visual data with applications from healthcare to autonomous driving. This tutorial introduced CV basics, demonstrated a hands-on image classification task using ResNet50, and highlighted tools, challenges, and trends. By experimenting with the code and exploring resources, you can build on this foundation to tackle more advanced CV projects.