Google News
logo
Mechanical Engineer - Interview Questions
Can you explain the difference between stress and strain?
Stress and strain are two fundamental concepts in the field of mechanics and materials science, and they describe how materials respond to external forces. Here's an explanation of the difference between stress and strain:

Stress :

* Definition: Stress is a measure of the internal resistance of a material to deformation when subjected to external forces or loads. It represents the force per unit area acting on a material.

* Symbol: Stress is typically represented by the Greek letter sigma (σ) and is measured in units of force per unit area, such as Pascals (Pa) or Megapascals (MPa).

* Types of Stress:
Normal Stress: This occurs when a force acts perpendicular (normal) to the surface area of the material. It's often categorized as tensile stress (stretching) or compressive stress (compression).
Shear Stress: This occurs when a force acts parallel to the surface area of the material, causing it to deform by sliding one part of the material relative to another.

* Effects: Stress can lead to deformation or changes in the shape of a material. It is responsible for causing materials to elongate, compress, bend, or twist when subjected to external forces.

Strain :

* Definition: Strain is a measure of the deformation or change in shape of a material in response to stress. It quantifies how much a material has stretched, compressed, bent, or twisted under the influence of applied forces.

* Symbol: Strain is typically represented by the Greek letter epsilon (ε) and is dimensionless because it is a ratio of lengths (change in length/original length) or angles (change in angle/original angle).

* Types of Strain:
Normal Strain: This measures the change in length (elongation or compression) of a material along a specific axis and is typically denoted as ε.
Shear Strain: This measures the change in shape (distortion) of a material due to shear stress and is denoted as γ.

* Effects: Strain quantifies how much a material deforms when subjected to stress. It helps engineers and scientists understand how materials behave under different loads and how much they can stretch or deform before reaching their breaking point.
Advertisement