Google News
logo
Mechanical Engineer - Interview Questions
What Is Tolerance? Why Tolerances Are Important in Manufacturing
What Is Tolerance?

Tolerance is a defined range of measurements or other physical traits that enable the product to function properly and/or look aesthetically pleasing. In most cases, the tolerance refers to the minimum or maximum range of measurements of a product in X, Y, and Z dimensions. However, you can also express tolerance in terms of color, texture, shape, or profile.

For example, if you’re designing a product that has geometric features like holes in a part, the manufacturer needs to know certain tolerance details before they can create the part, including:

* The nominal diameter of the hole—can it be smaller or larger in diameter in the end product, and if so, how much larger or smaller can it be before it affects core functionality?
* Exactly where the hole has to be placed in X, Y, and Z dimensions—how much variation in placement is allowed for the part to still function properly?

The more detailed these estimates are, the easier the product will be to manufacture. This is why tolerances are important in manufacturing. Defining them gives you greater control over the consistency, accuracy, precision, and quality of your products.

Why Tolerances Are Important in Manufacturing :

Just about every product has some feature that needs to be controlled through tolerance measurements. There are six main reasons why tolerances are important in manufacturing:

1. They improve the fit and functionality of parts : If you’re making parts that are compatible with other components, you absolutely have to define your tolerances. Even a small mismeasurement or variation in size will make your product functionally useless or incompatible.

2. They improve the look of the end product : If aesthetics are important to you, tolerances should be too. For instance, if you want a part to sit flush up against another part so there’s no obvious gap between them, you need to carefully control both parts’ dimensions and positions.

3. You can account for a reasonable amount of error : Tolerances assume a certain amount of error, but only to the extent that the part remains functional. When you define your tolerances from the start, you’re less likely to have to remake parts later.

4. Manufacturing is more cost-effective : When you define your tolerances, a product is only as precise as it needs to be. This means you’ll only pay for the materials, manufacturing tools, and labor that you actually need to get the desired end result.

5. You’ll get products to market faster : Although it takes a little longer to work out the tolerances up-front, this extra step saves you time in the long run. Mismeasurements and inconsistent products can delay your time to market by weeks or even months while you wait for new parts to be made.

6. Tolerances reduce manufacturing ambiguity and complexity : Ambiguity is the enemy of manufacturing. If you don’t specify what you want, you may end up with a product that you can’t use. Tolerances remove all ambiguity from the equation. Tolerances also make manufacturers’ lives easier. For instance, if your product doesn’t need to be accurate within ±0.002mm, then there’s no reason for manufacturers to break their backs trying to achieve this high level of precision.
Advertisement