Google News
Deep Learning - Interview Questions
Explain transfer learning in the context of deep learning.
Transfer learning is a learning technique that allows data scientists to use what they've learned from a previous machine learning model that was used for a similar task. The ability of humans to transfer their knowledge is used as an example in this learning. You can learn to operate other two-wheeled vehicles more simply if you learn to ride a bicycle. A model trained for autonomous automobile driving can also be used for autonomous truck driving. The features and weights can be used to train the new model, allowing it to be reused. When there is limited data, transfer learning works effectively for quickly training a model.
transfer learning
In the above image, the first diagram represents training a model from scratch while the second diagram represents using a model already trained on cats and dogs to classify the different class of vehicles, thereby representing transfer learning.